On the Congruence Lattice of an Abelian Lattice Ordered Group
نویسنده
چکیده
In the present note we characterize finite lattices which are isomorphic to the congruence lattice of an abelian lattice ordered group.
منابع مشابه
Convex $L$-lattice subgroups in $L$-ordered groups
In this paper, we have focused to study convex $L$-subgroups of an $L$-ordered group. First, we introduce the concept of a convex $L$-subgroup and a convex $L$-lattice subgroup of an $L$-ordered group and give some examples. Then we find some properties and use them to construct convex $L$-subgroup generated by a subset $S$ of an $L$-ordered group $G$ . Also, we generalize a well known result a...
متن کاملOn fuzzy convex lattice-ordered subgroups
In this paper, the concept of fuzzy convex subgroup (resp. fuzzy convex lattice-ordered subgroup) of an ordered group (resp. lattice-ordered group) is introduced and some properties, characterizations and related results are given. Also, the fuzzy convex subgroup (resp. fuzzy convex lattice-ordered subgroup) generated by a fuzzy subgroup (resp. fuzzy subsemigroup) is characterized. Furthermore,...
متن کاملFUZZY CONVEX SUBALGEBRAS OF COMMUTATIVE RESIDUATED LATTICES
In this paper, we define the notions of fuzzy congruence relations and fuzzy convex subalgebras on a commutative residuated lattice and we obtain some related results. In particular, we will show that there exists a one to one correspondence between the set of all fuzzy congruence relations and the set of all fuzzy convex subalgebras on a commutative residuated lattice. Then we study fuzzy...
متن کاملTHE LATTICE OF CONGRUENCES ON A TERNARY SEMIGROUP
In this paper we investigate some properties of congruences on ternary semigroups. We also define the notion of congruence on a ternary semigroup generated by a relation and we determine the method of obtaining a congruence on a ternary semigroup T from a relation R on T. Furthermore we study the lattice of congruences on a ternary semigroup and we show that this lattice is not generally modular...
متن کاملOn lattice of basic z-ideals
For an f-ring with bounded inversion property, we show that , the set of all basic z-ideals of , partially ordered by inclusion is a bounded distributive lattice. Also, whenever is a semiprimitive ring, , the set of all basic -ideals of , partially ordered by inclusion is a bounded distributive lattice. Next, for an f-ring with bounded inversion property, we prove that is a complemented...
متن کامل